Design, synthesis and evaluation of novel ErbB/HDAC multitargeted inhibitors with selectivity in EGFRT790M mutant cell lines

Eur J Med Chem. 2021 Mar 5:213:113173. doi: 10.1016/j.ejmech.2021.113173. Epub 2021 Jan 18.

Abstract

Acquired resistance leads to the failure of EGFR TKIs in NSCLC treatment. A novel series of hydroxamic acid-containing 4-aminoquinazoline derivatives as irreversible ErbB/HDAC multitargeted inhibitors for NSCLC therapy had been designed and synthesized, which displayed weak anti-proliferative activity in several EGFR wild-type cancer cell lines (NCI-H838, SK-BR-3, A549, A431) yet retained moderate activity to EGFRT790M resistance mutation harboring NCI-H1975 cells. The mechanistic studies revealed that the representative compound 11e was able to inhibit the phosphorylation of EGFR, up-regulate hyperacetylation of histone H3 and even reduce the expression of EGFR and Akt in NCI-H1975 cells. In further assays, compound 11e also showed moderate anti-proliferative activity in other EGFRT790M harboring tumor cell lines (NCI-H820, Ba/F3_EGFR_Del19-T790M-C797S) and low toxicities in normal cell lines (HL-7702, FHC). This selectivity of designed multitargeted compounds could serve as a potential strategy to circumvent multiple mechanisms of acquired resistance to EGFR-targeted therapy without severe toxicities and side effects resulting from broad inhibition.

Keywords: Drug design; EGFR(T790M) mutant; HDAC; Multitargeted compounds; NSCLC.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors*
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Histone Deacetylase Inhibitors / chemical synthesis
  • Histone Deacetylase Inhibitors / chemistry
  • Histone Deacetylase Inhibitors / pharmacology*
  • Humans
  • Hydroxamic Acids / chemical synthesis
  • Hydroxamic Acids / chemistry
  • Hydroxamic Acids / pharmacology*
  • Molecular Docking Simulation
  • Molecular Structure
  • Mutation
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Quinazolines / chemical synthesis
  • Quinazolines / chemistry
  • Quinazolines / pharmacology*
  • Structure-Activity Relationship

Substances

  • 4-aminoquinazoline
  • Antineoplastic Agents
  • Histone Deacetylase Inhibitors
  • Hydroxamic Acids
  • Protein Kinase Inhibitors
  • Quinazolines
  • EGFR protein, human
  • ErbB Receptors